您的当前位置:云资讯 > 科技 > 正文

2018年的人工智能和深度学习将会如何发展?

时间:2019-09-06 11:09:03 浏览:

(图注:以鸟的形象在图像中识别物体的卷积神经网络。)

目前,Facebook的照片标签和面部识别功能都使用了Covnets。在2018年,我们可以预计,Covnets将更广泛的应用于自动驾驶领域,特斯拉的Model X已经在使用Covnets来实现自动驾驶的相关功能。更近的,像Quere.ai这样的公司正在使用Covnets,并且在医学成像的诊断方面取得了显著的成功。预计公司将开始为这些高度精确的学习模式寻找不同的应用。

人工智能将加强数据安全

虽然机器学习和深度学习模型具有前所未有的预测精度,但有些目前仍容易受到质疑。例如,在受监督的机器学习中,模型学习标记数据的某些特征,训练和测试数据被假定来自相同的数据分布。如果数据在这个假设中失真,那么模型的预测精度就会受到很大的影响。以垃圾邮件过滤为例——如果将随机文本和图像添加到消息中,消息可能会绕过垃圾邮件检测系统。这就是为什么你的收件箱里塞满了垃圾邮件,尽管有一个系统可以阻止它。

安全部门巨头McAfee公司认为,将数字安全考虑在内,2018年勒索软件和其他数字威胁(比如对全球社会造成恐慌的“WannaCry”)越来越多地利用机器学习和深度学习技术。具体来说,这些模型将威胁到检测模型,从检测模型的防御反应中学习,并利用发现的漏洞来破坏检测模型,其速度比防御者修补漏洞的速度更快。

为了抵御这些技术,McAfee公司的工程师们一直在研究对抗机器学习,并组建一个先进的防御研究团队来为这些漏洞创建解决方案。要真正抵御这种攻击,唯一的办法是建立一种更为普遍的学习模式,甚至能找出最微小的异常。在这方面,一些有趣的研究正在进行中。

结论

在过去的两三年里,人工智能和深度学习在公共领域出现了爆炸式的增长,推出了一些令人兴奋的产品。在2018年和未来几年,它们将越来越多地出现在我们的日常互动中,尤其是在移动应用领域。

随着移动硬件地快速发展,它将能够支持复杂的深度学习任务。例如,苹果的iOS 11支持CoreML,这是一款面向iOS开发者的机器学习工具包。未来,开发者将可以部署支持文本预测和图像识别的应用(比如SnapChat),不需要任何机器学习的知识。

很显然,人工智能和深度学习的未来充满活力和前景。我们看到这种变化和进步的速度有多快,只有时间能给予我们答案。因此,随着新的一年的展开,让我们拭目以待,看看这一细分领域的表现吧。

(选自:yourstory 作者:Uday Keith 编译:网易见外智能编译平台 审校:nariiy )

关注网易智能公众号(smartman163),获取人工智能行业最新报告。

相关文章:

sitemap | 网站地图

免责声明:本站内容均来自网络或网友投稿,如有侵权请联系管理员,我们会第一时间为您处理或者删除侵权内容!谢谢您的合作!

Copyright © 2018 云资讯 All Rights Reserved.

Top